The structure of a glycerol teichoic acid-like O-specific polysaccharide of *Hafnia alvei* 1205

Ewa Katzenellenbogen ^a, Elzbieta Romanowska ^a, Nina A. Kocharova ^b, Yuriy A. Knirel ^b, Alexander S. Shashkov ^b and Nikolay K. Kochetkov ^b

ABSTRACT

The O-specific polysaccharide of *Hafnia alvei* 1205 contained D-glucose, D-galactose, 2-acetamido-2-deoxy-D-glucose, 4-acetamido-4,6-dideoxy-D-glucose (Qui4NAc), glycerol, phosphate, and *O*-acetyl groups. On the basis of 1D and 2D shift-correlated homonuclear and ¹³C-¹H heteronuclear NMR spectroscopy, methylation analysis, Smith degradation, and dephosphorylation with hydrofluoric acid, it was concluded that the O-antigen was a partially *O*-acetylated teichoic acid-like polysaccharide having the following structure:

$$\alpha$$
-D-Glc p

1

4

 \rightarrow 3)- β -D-Gal p -(1 \rightarrow 3)- α -D-Glc p NAc-(1 \rightarrow 3)- β -D-Qui p 4NAc-(1 \rightarrow 1)-Gro-(3-P \rightarrow 2

1

 β -D-Glc p NAc

| 3,6
(OAc)₂

INTRODUCTION

The structures of the O-antigens of *Hafnia alvei* strains ATCC 13 337, 2, 38, 39, 1187, and 1211 have been elucidated¹⁻⁵ and contain repeating units that range from a disaccharide⁵ for that of strain 38 to a sialic acid-containing octasaccharide³ for that of strain 2.

^a L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław (Poland)

^b N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow (Russia) (Received November 29th, 1991; accepted February 13th, 1992)

Correspondence to: Dr. Yu.A. Knirel, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia.

We now report the structure of the O-specific polysaccharide of *H. alvei* strain 1205.

RESULTS AND DISCUSSION

The lipopolysaccharide of *H. alvei* 1205 was isolated (2.8%) from dry bacterial cells by phenol-water extraction⁶ followed by gel filtration⁷ on Sepharose 2B. The O-specific polysaccharide (PS-I), obtained by hydrolysis of the lipopolysaccharide with aqueous 1% acetic acid (100°, 1 h) followed by fractionation on Sephadex G-50, had $[\alpha]_D + 53^\circ$ (c 2, water).

The 13 C-NMR spectrum (Fig. 1) indicated that PS-I lacked a strictly regular structure, most probably owing to non-stoichiometric O-acetylation (signals for CO CH_3 at 21.5–21.7 ppm). However, the O-deacetylated polysaccharide (PS-II) had a regular structure with a pentasaccharide repeating unit. Thus, the 1 H-NMR spectrum (Table I) contained, inter alia, signals at 4.4–5.1 (5 s, 5 H-1), 1.16 (d, $J_{5.6}$ 6.4 Hz, CHMe), and 1.95–2.07 ppm (3 s, 3 NAc). The 13 C-NMR spectrum (Table II) contained, inter alia, signals at 98–104 (5 C-1), 52.5–57.4 (3 C–N), 17.4 (CMe), 23.0–23.5 (3 NCO CH_3), and 174.2–174.9 ppm (3 NCOCH $_3$).

The total number of ¹³C signals and the number of the signals for CH_2O groups (six as determined by using the attached proton test, including four at 61.0–62.0 ppm, and one each at 67.4 and 71.8 ppm) showed that PS-II contained five sugar residues and glycerol. The ³¹P-NMR spectrum of PS-II contained one signal at 0.54 ppm (s) belonging to a monophosphate ester and indicative tentatively of glycerol phosphate.

Using enzymic methods^{2,8}, PS-I was found to contain glucose, galactose, 2-amino-2-deoxyglucose, and O-acetyl groups in the ratios 1.0:0.44:1.7:0.6. The proofiguration of each monosaccharide was established² by reactions with poslucose oxidase, poslactose oxidase, and hexokinase, respectively. The 6-deoxy sugar was identified tentatively as 4-acetamido-4,6-dideoxyglucose (Qui4NAc) by PC ($R_{\rm Rha}$

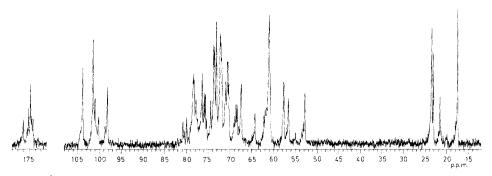


Fig. 1. ¹³C-NMR spectrum of the O-specific polysaccharide (PS-I).

TABLE I 1 H-NMR data a (δ in ppm, J in Hz)

H-1	H-2	H-3	H-4	H-5	H-6
O-Deacetylated poly	ysaccharide (1, I	PS-II)			
β-d-GlcpNAc					
4.93 (d)	3.73 (dd)	3.47 (m)		3.36-3.43 (m)
$J_{1,2} 8.6$	$J_{2,3} \sim 1$	$J_{3,4} \sim 10$			
α-d-Glc p					
5.00 (d)	3.50 (dd)	3.74 (t)	3.46 (t)	3.89 (m)	
$J_{1,2} 3.5$	$J_{2,3} 10$	$J_{3,4} \sim 10$	$J_{4,5} \sim 10$		
β-d-Gal p					
4.66 (d)	3.96 (dd)	4.35 (dt) ^b	4.17 (d)	3.75 (m)	
$J_{1,2} 8.0$	$J_{2,3}$ 10	$J_{3,4} 2.8$	$J_{4,5} < 0.5$		
α -D-Glc p NAc			· ·	40(1)	
5.05 (d)	4.04 (dd)	3.94 (dd)	3.65 (t)	4.19 (dt)	
$J_{1,2}$ 3.8	$J_{2,3}$ 10.7	$J_{3,5} \sim 9$	$J_{4,5} \sim 10$	$J_{5,6a} \approx J_{5,6b}$,≈3
β -D-Qui p 4NAc	- 10 (11)			2.40 ()	4.46(1)
4.43 (d)	3.40 (dd)	3.67-3	3.72 (m)	3.49 (m)	1.16 (d)
$J_{1,2} 8.2$	$J_{2,3} \sim 9$			$J_{5,6}$ 6.4	
Smith-degraded pol	ysaccharide (2,	PS-III)			
β-D-Gal p					
4.48 (d)	3.60 (dd)	$4.10 (dt)^{b}$	4.12 (d)		
$J_{1.2}$ 7.9	$J_{2,3}$ 10	$J_{3,4}$ 3.1	$J_{4,5} < 0.5$		
α-d-Glc pNAc			***		
5.03 (d)	4.05 (dd)	3.89 (dd)	3.62 (t)	4.16 (dt)	
$J_{1,2} 3.3$	$J_{2,3}$ 10.2	$J_{3,4} \sim 9$	$J_{4,5}$ 10.1	$J_{5,6a} \approx J_{5,6b}$,≈3
β-D-Qui p4NAc			*		
4.43 (d)	3.40 (t)	3.65 (t)	3.73 (t)	3.50 (dq)	1.16 (d)
$J_{1.2} 8.0$	$J_{2,3} \sim 9$	$J_{3,4} \sim 10$	$J_{4,5}$ 9.3	$J_{5,6}$ 6.4	
· ·					
Oligosaccharide 3					
α -D-Glc p	2.55 (44)	2.75 (4)	2.47(4)	115 (44)	
4.93 (d)	3.55 (dd)	3.75 (t)	3.47 (t)	4.15 (dt)	~ 25
$J_{1,2}$ 4	$J_{2,3} 10.5$	$J_{3,4} \sim 10$	$J_{4,5} \sim 10$	$J_{5,6a} \approx J_{5,6b}$, ≈ 3.3
β -D-Gal p	2.57 (44)	2 75 (44)	4.03 (4)		
4.51 (d)	3.56 (dd)	3.75 (dd)	4.03 (d)		
$J_{1,2} 8.0$	$J_{2,3} 10.1$	$J_{3,4} 3.2$	$J_{4,5} < 0.5$		
α -D-Glc p NAc	4.00 (1.1)	201(44)	2 (2 (4)	4 20 (44)	
5.06 (d)	4.08 (dd)	3.91 (dd)	3.63 (t)	4.20 (dt)	~ 3
$J_{1,2}$ 4	$J_{2,3}$ 10.6	$J_{3,4}$ 9.1	$J_{4,5}$ 10	$J_{5,6a} \approx J_{5,6t}$, ~ 3
β -D-Qui p 4NAc	2 42 (4)	2 (0 (4)	2 72 (4)	254(40)	1 10 (4)
4.46 (d)	3.43 (t)	3.69 (t)	3.73 (t)	3.54 (dq)	1.19 (d)
$J_{1,2} 8.1$	$J_{2,3}$ 8.5	$J_{3,4} \sim 9$	$J_{4,5} \sim 10$	$J_{5,6}$ 6.2	
Oligosaccharide 4					
α-D-Glc pNAc					
5.07 (d)	3.89 (dd)	3.75 (dd)	3.55 (dd)	4.16 (dt)	3.85 (dd) 3.78 (dd)
$J_{1,2}$ 4	J _{2,3} 10.7	J _{3,4} 9	$J_{4,5}$ 10.1	$J_{5,6a}$ 3.4	$J_{5,6b}$ 3 $J_{6a,6b}$ 12.3
β-D-Qui p4NAc					
4.47 (d)	3.43 (t)	3.68 (t)	3.75 (t)	3.54 (dq)	1.18 (d)
$J_{1,2}$ 8.5	$J_{2,3}$ 8.5	$J_{3,4} \sim 9$	$J_{4,5} \sim 9$	$J_{5,6}$ 6.2	
Glycoside 5					
β-D-Qui p4NAc					
	3.35 (t)	3.50 (dd)	3.5/	3.61 (m)	1.20 (d)
4.46 (d)			3.54-3.61 (m)		$J_{5,6}$ 5.7
$J_{1,2} \ 8$	$J_{2,3} 8.4$	$J_{3,4}$ 10.4			5,6 3.7

0.92) after hydrolysis of PS-I (10 M HCl, 80°, 0.5 h). The content of phosphate (P) in PS-I was estimated by the method of Ames and Dubin⁹ to be 2.6%.

Hydrolysis of PS-II with 2 M trifluoroacetic acid (120°, 1 h) followed by GLC of the alditol acetates derived from the products revealed glycerol and the ratios of Glc, Gal, GlcN, and Qui4N to be 1.3:1:1.7:0.1. The reduced proportion of Qui4N was probably due to partial decomposition, and the structure was confirmed by GLC-MS of its derivative, which had a fragmentation identical to that ¹⁰ of 4-acetamido-1,2,3,5-tetra-*O*-acetyl-4,6-dideoxyglucitol.

Therefore, PS-II had a repeating unit that contained 2 GlcNAc, Glc, Gal, Qui4NAc, glycerol, and phosphate.

Methylation analysis¹¹ of PS-I gave 2,3,4,6-tetra-*O*-methylglucose, 3,6-di-*O*-methylgalactose, 4,6-dideoxy-2-*O*-methyl-4-methylaminoglucose, 2-deoxy-3,4,6-tri-*O*-methyl-2-methylaminoglucose, and 2-deoxy-4,6-di-*O*-methyl-2-methylaminoglucose in the ratios 1.0:0.3:0.7:1.3:1.2. The mass spectrum of the alditol acetate derived from Qui4N accorded with the fragmentation described¹⁰. These data indicated that PS-I was branched with 2,4-disubstituted Gal at the branch point, Glc and GlcNAc as branches, 3-substituted GlcNAc, and 3-substituted Qui4NAc. The presence of two branches and only one disubstituted residue (Gal) may be accounted for by the original presence of a phosphodiester linkage attached to Gal, which was partially split under the alkaline conditions of methylation. The reduced proportion of 3,6-di-*O*-methylgalactose was probably associated with incomplete hydrolysis of the galactose–phosphate linkage.

The ¹H-NMR spectrum of PS-II was assigned by a sequential selective spin-decoupling procedure, 2D homonuclear shift-correlated spectroscopy (COSY, Fig. 2), and one-step relayed coherence transfer COSY (COSYRCT, Fig. 3). As a result, the chemical shifts and J values of the signals for H-1,2,3,4,5,6 of Qui4NAc, H-1,2,3,4,5 of Glc and α -GlcNAc, and H-1,2,3,4 of Gal and β -GlcNAc were determined (Table I). The position of the signals for H-5 of Gal and β -GlcNAc and H-2 of glycerol were clarified by using 2D ¹³C-¹H heteronuclear shift-correlated spectroscopy (Fig. 4) that also allowed assignment of the ¹³C-NMR spectrum of PS-II (Table II).

In accord with the methylation analysis data, the $^3J_{\rm H,H}$ values (Table I) indicated the five sugar residues to be pyranosidic, and the Gal ($J_{1,2}$ 8.0 Hz) and Qui4NAc ($J_{1,2}$ 8.2 Hz) to be β . The two GlcNAc residues were distinguished by the relatively lowfield positions of the signals for H-2 at 4.04 and 3.73 ppm as compared to that of H-2 of Glc at 3.50 ppm and their correlation with the signals for C-2 in the region of carbon atoms bearing nitrogen (δ 52.5 and 56.5 ppm, respectively). The Glc was α ($J_{1,2}$ 3.5 Hz), one GlcNAc was α ($J_{1,2}$ 3.8 Hz), and one was β ($J_{1,2}$ 8.6 Hz).

The lowfield position of the signal for Gal H-3 and its additional splitting ($J_{\rm H,P}$ ~ 10 Hz) was indicative of phosphorylation at position 3. This conclusion was confirmed by the lowfield position (78.4 ppm) of the signal for Gal C-3 in the 13 C-NMR spectrum of PS-II, as compared to that 12 (74.1 ppm) when this position

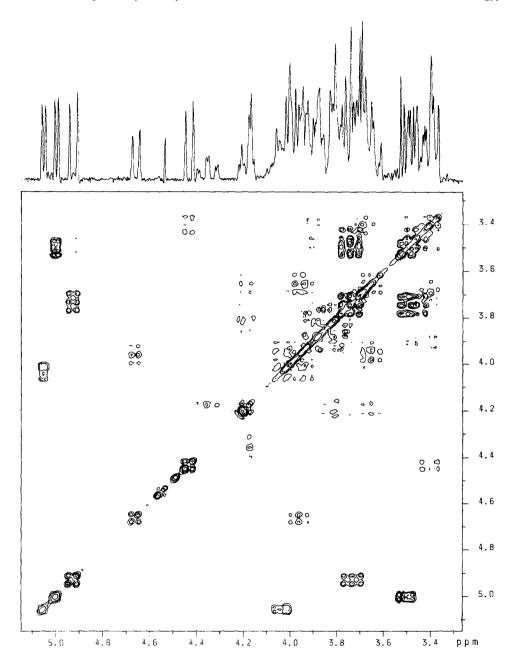


Fig. 2. 2D Homonuclear shift-correlated spectrum (COSY) of the O-deacetylated polysaccharide PS-I (1, PS-II). The corresponding 1D 1 H-NMR spectrum is displayed along the F_2 axis.

is unsubstituted, and splitting due to C,P coupling. Analysis of the effects of glycosylation¹² in this spectrum led to results consistent with the methylation analysis data and confirmed the modes of substitution of the sugar residues. The

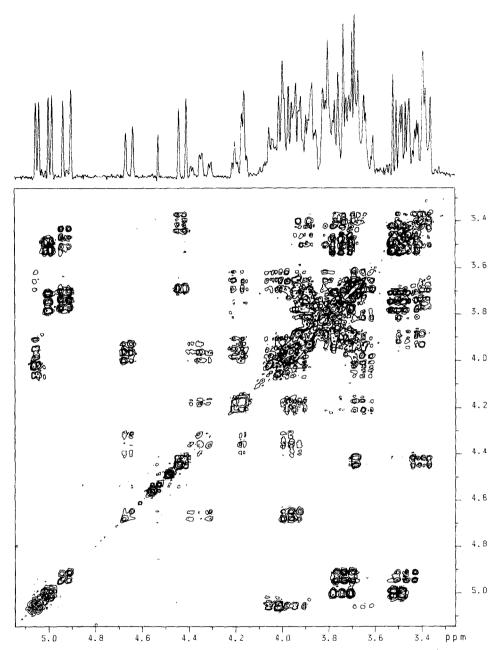


Fig. 3. 2D Homonuclear shift-correlated spectrum with one-step relayed coherence transfer (COSYRCT) of PS-II (1). The corresponding 1D 1 H-NMR spectrum is displayed along the F_{2} axis.

glycerol was unsubstituted at position 2, since the chemical shift (δ 70.4 ppm) of the C-2 signal was not shifted downfield.

The following significant inter-residue NOEs were observed for PS-II: from H-1

of Glc to H-4 of Gal, from H-1 of β -GlcNAc to H-2 of Gal, from H-1 of Gal to H-3 of α -GlcNAc, and from H-1 of α -GlcNAc to H-3 of Qui4NAc. These data accorded with the pattern of substitution established above and indicated that α -Glc and β -GlcNAc were attached to β -Gal at positions 4 and 2, respectively, and that β -Gal was linked to α -GlcNAc which, in turn, was linked to β -Qui4NAc.

No interpretable NOE results were obtained on pre-irradiation of H-1 of Qui4NAc. This residue was not phosphorylated at HO-1 (no coupling of H-1 to P). Moreover, none of the sugar residues in PS-II was 6-glycosylated (methylation analysis), but there was a signal (71.8 ppm) in the ¹³C-NMR spectrum for a glycosylated CH₂OH group, and it was concluded that Qui4NAc was linked to a CH₂OH group of glycerol. The second CH₂OH group was phosphorylated, as indicated by another downfield-shifted ¹³C signal for a CH₂OH group [67.4 ppm,

TABLE II

13C-NMR data a (δ in ppm)

Compound	C-1	C-2	C-3	C-4	C-5	C-6
O-Deacetylated polysaccharid	e (1, PS-II)					
β -D-Glc p NAc-(1 \rightarrow	100.7	56.5	76.6	71.3	77.2	61.4 ^b
α -D-Glc p -(1 \rightarrow	101.0	73.0	73.7	70.6	73.2	61.3 ^b
↓ 4						
\rightarrow 3)- β -D-Gal p -(1 \rightarrow	100.7	75.1 ^c	78.4 ^c	77.8	75.7	62.0 ^b
2						
\rightarrow 3)- α -D-Glc pNAc-(1 \rightarrow	98.0	52.5	80.8	68,8	72.0	61.0 ^b
\rightarrow 3)- β -D-Qui p 4NAc-(1 \rightarrow	103.7	73.4	78.6	57.4	72.1	17.4
\rightarrow 1)-Gro-(3 \rightarrow	71.8	70.4 ^c	67.4 ^c			
Smith-degraded polysaccharid	e (2, PS-III)					
\rightarrow 3)- β -D-Gal p -(1 \rightarrow	104.2	70.9 ^c	78.8 ^c	69.5	75.9	62.0 ^b
\rightarrow 3)- α -D-Glc pNAc-(1 \rightarrow	98.6	53.3	81.6	68.8	72.5	61.3 ^b
\rightarrow 3)- β -D-Qui p4NAc-(1 \rightarrow	103.9	73.4	79.4	57.5	72.1	17.5
\rightarrow 1)-Gro-(3 \rightarrow	71.8	70.5 ^c	67.8 ^c			
Oligosaccharide 3						
α -D-Glc p -(1 \rightarrow	101.2	72.9	73.8	70.3	73.1	61.1 ^b
\rightarrow 4)- β -D-Gal p -(1 \rightarrow	104.7	71.7	72.8	78.3	76.4	61.3 ^b
\rightarrow 3)- α -D-Glc p NAc-(1 \rightarrow	98.6	53.6	81.3	69.1	72.4	61.0 ^b
\rightarrow 3)- β -D-Qui p4NAc-(1 \rightarrow	103.6	73.5	78.9	57.6	72.1	17.4
→ 1)-Gro	72.1	71.6	63.4			
Oligosaccharide 4						
α -D-Glc p NAc-(1 \rightarrow	99.4	54.7	71.8	70.5	72.6	61.0 ^b
\rightarrow 3)- β -D-Qui p 4NAc-(1 \rightarrow	103.5	73.5	78.8	57.6	72.2	17.4
→ OCH ₂ CH ₂ OH	72.1	61.7 ^b				

^a Assignment of the spectrum of PS-II was made with the help of 2D heteronuclear ¹H-¹³C shift-correlated (XHCORRD) spectroscopy. Tentative assignments of the spectra of PS-III (2), 3, and 4 were based on comparison with the spectrum of PS-II (1) and published data¹⁰. Additional signals: 23.0-23.5 (NHCOCH₃) and 174.2-175.9 ppm (NHCOCH₃). ^b Assignments could be interchanged. ^c The signal was split due to coupling to phosphorus.

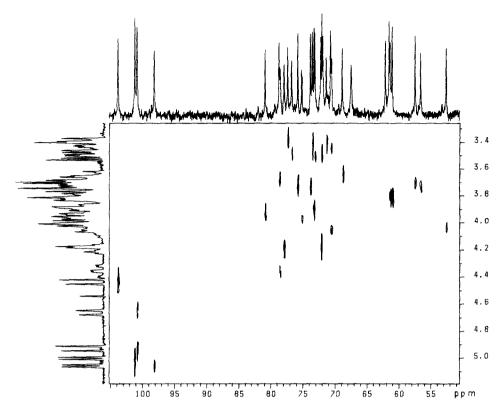


Fig. 4. 2D Heteronuclear 13 C- 1 H shift-correlated spectrum (XHCORRD) of PS-II (1). The corresponding 1D 13 C- and 1 H-NMR spectra are displayed along the F_2 and F_1 axes, respectively.

cf. 63.8 ppm for the unsubstituted CH_2OH (ref. 13) and 67.5 ppm in \rightarrow 1)-Gro-(3-P \rightarrow (ref. 14)], and the splitting of this signal and that for C-2 of glycerol was due to coupling to phosphorus.

Therefore, it was concluded that PS-II had structure 1.

$$\alpha$$
-D-Glc p

1

4

 \rightarrow 3)- β -D-Gal p -(1 \rightarrow 3)- α -D-Glc p NAc-(1 \rightarrow 3)- β -D-Qui p 4NAc-(1 \rightarrow 1)-Gro-(3-P \rightarrow 2

 \uparrow
 β -D-Glc p NAc

1 (PS-II)

The structure 1 was confirmed by selective cleavages of PS-II. Thus, Smith degradation resulted in a polymeric product (2, PS-III) with a trisaccharide repeating unit that contained Gal, GlcNAc, Qui4NAc, glycerol, and phosphate.

Dephosporylation of PS-II with aqueous 48% hydrofluoric acid also split off β-GlcNAc and gave a tetraosyl-glycerol (3). Two successive Smith degradations of 3 gave a biosyl-(ethylene glycol) (4) and a glycosyl-(ethylene glycol) (5), respectively. The structures of 2–5 were established, as described above for PS-II, by 1D and 2D ¹H-NMR spectroscopy (Table I), including NOE experiments, and confirmed by the ¹³C-NMR data (Table II).

→ 3)-
$$\beta$$
-D-Gal p -(1 → 3)- α -D-Glc p NAc-(1 → 3)- β -D-Qui p 4NAc-(1 → 1)-Gro-(3-P → 2 (PS-III)

$$\alpha$$
-D-Glc p

1

4

 β -D-Gal p -(1 \rightarrow 3)- α -D-Glc p NAc-(1 \rightarrow 3)- β -D-Qui p 4NAc-(1 \rightarrow 1)-Gro

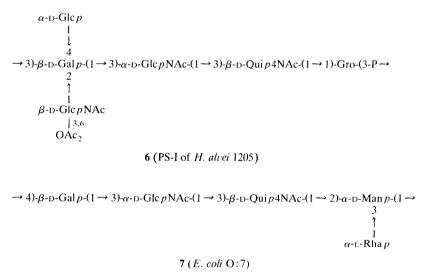
3

$$\alpha$$
-D-Glc p NAc-(1 \rightarrow 3)- β -D-Qui p 4NAC-(1 \rightarrow OCH $_2$ CH $_2$ OH

4

$$\beta$$
-D-Qui p 4NAc-(1 \rightarrow OCH $_2$ CH $_2$ OH

5


The formation of PS-III (2) and 3–5 and their structures were consistent with the structure (1) established above for PS-II. The relatively large $^3J_{\rm H,H}$ values (8–10 Hz), determined from the 1 H-NMR spectrum of PS-III, confirmed that Qui4NAc had the *gluco* configuration. The absolute configuration of Qui4NAc was determined as follows. The signal (57.6 ppm) for C-4 of the 3-substituted Qui4NAc in the 13 C-NMR spectrum of 4 was shifted due to the β -effect of glycosylation by only 0.35 ppm (cf. 57.95 ppm, which is characteristic 10 of the unsubstituted Qui4NAc). This relatively small β -effect indicated that the (1 \rightarrow 3)-linked α -D-GlcNAc and Qui4NAc in 4 had the same absolute configuration (a shift > 1 ppm would be expected 12 if the absolute configurations were different); hence, Qui4NAc was a D sugar.

The positions of the O-acetyl groups in PS-I were determined from the 13 C-NMR spectrum. The signals for COCH₃ in the region 21.5–21.7 ppm (Fig. 1) showed that the repeating unit contained at least two OAc groups, one of which was located at position 6 of a sugar residue as indicated by the downfield position (64.7 ppm) of one C-6 signal as compared to that for PS-II. The signals for C-3,4,5 of β -GlcNAc were split due to the presence of O-acetylated and non-O-acetylated forms, whereas the signals for the other sugar residues had chemical shifts similar to those of the corresponding resonances for PS-II, except those for C-1 of β -Gal and C-3 of α -GlcNAc which were close to the site of O-acetylation. Therefore, one OAc group was at position 6 of β -GlcNAc. The presence, as a result of the

 β -effect of O-acetylation¹⁵, of a minor signal at 53.6 ppm and a corresponding decrease in the intensity of the signal at 55.1 ppm (C-2 of β -GlcNAc) indicated that the second OAc group was attached to position 3 of β -GlcNAc.

The location of the OAc groups at positions 3 and 6 of β -GlcNAc was confirmed by the presence of at least three signals for H-1 of the β -GlcNAc residue at 4.87, 4.89, and 4.93 ppm in the ¹H-NMR spectrum of PS-I (not shown), which corresponded to the presence of non-acetylated and two *O*-acetylated forms of this residue (PS-II gave only one signal for H-1 of β -GlcNAc at 4.93 ppm. The chemical shifts for the H-1 resonances of the other residues were the same (Qui4NAc) or differed by ≤ 0.02 ppm. On the basis of the integrated intensities of the appropriate ¹H and ¹³C signals for PS-I, the degrees of *O*-acetylation of β -GlcNAc at positions 3 and 6 were ~ 10 and $\sim 40\%$, respectively.

Thus, it was concluded that the O-specific polysaccharide of *H. alvei* 1205 had the structure **6**.

The teichoic acid-like structure **6** is uncommon for bacterial O-antigens. To the best of our knowledge, the only reported O-antigens of this type are those of several *Yersinia kristensenii* serotypes, which have hexasaccharide repeating units connected via 2-substituted glycerol 1-phosphate ^{16–18}.

Another chemical feature of PS-I (6) is the presence of the rare sugar 4-acetamido-4,6-dideoxy-D-glucose. The first polysaccharide shown¹⁰ to contain this monosaccharide was the O-antigen of *Escherichia coli* O:7, the structure 7 of which has the trisaccharide fragment β -D-Galp-(1 \rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow 3)- β -D-Quip4NAc in common with PS-I (6). Various 2-amino-2,6-dideoxy-, 3-amino-3,6-dideoxy-, and 4-amino-4,6-dideoxy-hexoses have been identified^{4.19} in strains 23, 1204, 1211, 1216, and 1220 of *H. alvei*, and that in strain 1211 has been identified⁴ as 3,6-dideoxy-3-[(R)-3-hydroxybutyroamido]-D-galactose.

EXPERIMENTAL

General methods.—Optical rotations were measured with a Jasco DIP 360 polarimeter for solutions in water at 25°. PC was carried out using 6:4:3 1-butanol-pyridine-water. GLC was performed with a Hewlett-Packard 5890 instrument equipped with a flame-ionisation detector and a glass capillary Ultra 1 column (0.2 mm \times 25 m). GLC-MS was performed with a Hewlett-Packard 5971 A system, using an HP-1 glass capillary column (0.2 mm \times 12 m) and a temperature program of 150 \rightarrow 270° at 8°/min. Gel-permeation chromatography was performed on a column (2 \times 100 cm) of Sephadex G-50 in pyridine-acetic acid buffer (pH 5.75) or on a column (1.6 \times 80 cm) of Fractogel TSK HW 40(S) in water, and eluates were monitored by the phenol-H₂SO₄ method²⁰ or with a Knauer differential refractometer.

Hafnia alvei strain 1205, from the collection of the Pasteur Institute (Paris), was grown in a liquid medium as described²¹.

NMR spectroscopy.—The ¹H-NMR and NOE spectra were recorded with a Bruker WM-250 instrument for solutions in D_2O at 30° (internal acetone, δ 2.23). Sequential, selective spin-decoupling experiments were performed as described²². The 1D NOE spectra were obtained using the Bruker NOEMULT program in the difference mode where the on-resonance irradiated spectrum was subtracted from that in which the irradiation frequency was off resonance.

The 2D homonuclear shift-correlated spectrum (COSYHG) and one-step relayed coherence transfer shift-correlated spectrum (COSYRCTG) of PS-II were obtained with suppression of the peak for HDO under the following conditions: 90° pulse of $5.7 \,\mu s$, the spectral width was 475 Hz, and the spectral size in the time domain was $512 \, (F_2) \times 256 \, (F_1)$. For each t_1 , 64 transients were accumulated, the relaxation delay D1 was 1 s, and D2 was $80 \, \mu s$ for COSYHG and $32 \, \mu s$ for COSYRCTG. The matrix was zero-filled in each dimension, multiplied by an unshifted sine-bell window function, and Fourier transformed in the magnitude mode.

The 13 C-NMR spectra were recorded with a Bruker AM-300 instrument for solutions in D_2O at 60° (internal acetone, δ 31.45).

The 2D heteronuclear $^{13}C^{-1}H$ shift-correlated spectrum (XHCORRD) of PS-II was obtained under the following conditions: 90° pulses of 25 μ s for ^{1}H and 14 μ s for ^{13}C , the time domain in F_2 was 2K, 64 spectra were collected with 1000 scans, the spectral windows were 4500 Hz in the F_2 domain and 600 Hz in the F_1 domain (the region for the resonance of ring carbons and protons only), the relaxation delay D1 was 0.6 s, and D3 and D4 were 3.3 μ s and 2.2 μ s, respectively. The matrix was zero-filled in each dimension, multiplied by a phase-shifted ($\pi/2$) squared sine-bell window function, and Fourier transformed in the magnitude mode.

O-Deacetylation of PS-I.—Aqueous 12% ammonia was used at room temperature overnight and the O-deacetylated polysaccharide (1, PS-II, 90%) was isolated by gel-permeation chromatography on TSK HW 40.

Dephosphorylation of PS-II.—Aqueous 48% hydrofluoric acid was used at room temperature for 48 h, the solution was concentrated in vacuo at room temperature over solid NaOH, and the oligosaccharide 3 (20%) was isolated by gel-permeation chromatography on TSK HW 40.

Smith degradation.—Oligosaccharide 3 (8 mg) was treated with 0.1 M NaIO₄ (1 mL) at room temperature in the dark for 24 h, and the product was reduced with NaBH₄ (15 mg) for 2 h, neutralised with concd HOAc, desalted by gel-permeation chromatography on TSK HW 40, and hydrolysed with aq 1% HOAc (1 mL) at 100° for 1 h to give oligosaccharide 4 (80%), isolated by gel-permeation chromatography on TSK HW 40. In a similar manner, 4 was converted into the glycoside 5 (90%), $[\alpha]_D + 4.2^\circ$, and PS-II (1) into PS-III (2, 70%).

REFERENCES

- A. Gamian, E. Romanowska, H.J. Opferkuch, M. Hauck, and J. Dabrowski, Eur. J. Biochem., 186 (1989) 611-620.
- 2 E. Katzenellenbogen, E. Romanowska, N.A. Kocharova, A.S. Shashkov, G.M. Lipkind, Yu.A. Knirel, and N.K. Kochetkov, *Carbohydr. Res.*, 203 (1990) 219–227.
- 3 A. Gamian, E. Romanowska, U. Dabrowski, and J. Dabrowski, Biochemistry, 30 (1991) 5032-5038.
- 4 E. Katzenellenbogen, E. Romanowska, U. Dabrowski, and J. Dabrowski, Eur. J. Biochem., 200 (1991) 401-407.
- 5 E. Katzenellenbogen, E. Romanowska, D. Witkowska, and A.S. Shashkov, *Carbohydr. Res.*. 231 (1992) 51-54.
- 6 O. Westphal and K. Jann, Methods Curbohydr. Chem., 5 (1965) 83-91.
- 7 E. Romanowska, Anal. Biochem., 33 (1970) 383-389.
- 8 E. Katzenellenbogen, I. Ekiel, and E. Romanowska, Carbohydr. Res., 179 (1988) 349-357.
- 9 B.N. Ames and D.T. Dubin, J. Biol. Chem., 235 (1960) 769-775.
- 10 V.L. L'vov, A.S. Shashkov, B.A. Dmitriev, N.K. Kochetkov, B. Jann, and K. Jann, *Carbohydr. Res.*, 126 (1984) 249–259.
- 11 K. Stellner, H. Saite, and S. Hakomori, Arch. Biochem. Biophys., 155 (1973) 464-472.
- 12 G.M. Lipkind, A.S. Shashkov, Yu.A. Knirel, E.V. Vinogradov, and N.K. Kochetkov, *Carbohydr. Res.*, 175 (1988) 59–75.
- 13 W.R. De Boer, F.J. Kruyssen, J.T.M. Wouters, and C. Kruk, Eur. J. Biochem., 62 (1976) 1-6.
- 14 N.K. Skoblilova, N.S. Agre, A.S. Shashkov, and I.B. Naumova, Bioorg. Khim., 8 (1982) 848-856.
- 15 P.-E. Jansson, L. Kenne, and E. Schweda, J. Chem. Soc., Perkin Trans. 1, (1987) 377-383.
- 16 V.L. L'vov, S.V. Gur'yanova, A.V. Rodionov, B.A. Dmitriev, A.S. Shashkov, A.V. Ignatenko, R.P. Gorshkova, and Y.S. Ovodov, *Bioorg. Khim.*, 16 (1990) 379–389.
- 17 V.L. L'vov, S.V. Gur'yanova, A.V. Rodionov, and R.P. Gorshkova, Carbohydr. Res., 228 (1992) 415–422.
- 18 R.P. Gorshkova, V.V. Isakov, E.L. Nazarenko, Y.S. Ovodov, S.V. Gur'yanova, and B.A. Dmitriev, unpublished data.
- 19 E. Katzenellenbogen and E. Romanowska, unpublished data.
- 20 M. Dubois, K.A. Gilles, J.K. Hamilton, P. Rebers, and F. Smith, *Anal. Chem.*, 28 (1956) 350-356.
- 21 E. Romanowska and M. Mulczyk, Eur. J. Biochem., 5 (1968) 109-113.
- 22 N.A. Kocharova, K. Hatano, A.S. Shashkov, Yu.A. Knirel, N.K. Kochetkov, and G.B. Pier, J. Biol. Chem., 264 (1989) 15569–15573.